Asymmetric integration recorded from vestibular-only cells in response to position transients.
نویسندگان
چکیده
Angular and translational accelerations excite the semicircular canals and otolith organs, respectively. While canal afferents approximately encode head angular velocity due to the biomechanical integration performed by the canals, otolith signals have been found to approximate head translational acceleration. Because central vestibular pathways require velocity and position signals for their operation, the question has been raised as to how the integration of the otolith signals is accomplished. We recorded responses from 62 vestibular-only neurons in the vestibular nucleus of two monkeys to position transients in the naso-occipital and interaural orientations and varying directions in between. Responses to the transients were directionally asymmetric; one direction elicited a response that approximated the integral of the acceleration of the stimulus. In the opposite direction, the cells simply encoded the acceleration of the motion. We present a model that suggests that a neural integrator is not needed. Instead a neuron with a long membrane time constant and an excitatory postsynaptic potential duration that increases with the firing rate of the presynaptic cell can emulate the observed behavior.
منابع مشابه
Multisensory integration in early vestibular processing in mice: the encoding of passive vs. active motion.
The mouse has become an important model system for studying the cellular basis of learning and coding of heading by the vestibular system. Here we recorded from single neurons in the vestibular nuclei to understand how vestibular pathways encode self-motion under natural conditions, during which proprioceptive and motor-related signals as well as vestibular inputs provide feedback about an anim...
متن کاملResponses of primate caudal parabrachial nucleus and Kölliker-fuse nucleus neurons to whole body rotation.
The caudal aspect of the parabrachial (PBN) and Kölliker-Fuse (KF) nuclei receive vestibular nuclear and visceral afferent information and are connected reciprocally with the spinal cord, hypothalamus, amygdala, and limbic cortex. Hence, they may be important sites of vestibulo-visceral integration, particularly for the development of affective responses to gravitoinertial challenges. Extracell...
متن کاملAsymmetric craniofacial remodeling and lateralized behavior in larval flatfish.
Flatfishes, such as flounder, are the world's most asymmetric vertebrates. It is unknown if the development of lateralized swimming behavior during metamorphosis is an adaptive response to bilaterally asymmetric eye positioning, or if this results from a vestibular response to thyroid hormone. This study describes larval development in left-sided, right-sided and bilaterally symmetric variants ...
متن کاملMultimodal integration in rostral fastigial nucleus provides an estimate of body movement.
The ability to accurately control posture and perceive self-motion and spatial orientation requires knowledge of the motion of both the head and body. However, whereas the vestibular sensors and nuclei directly encode head motion, no sensors directly encode body motion. Instead, the convergence of vestibular and neck proprioceptive inputs during self-motion is generally believed to underlie the...
متن کاملDevelopmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations
Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 88 4 شماره
صفحات -
تاریخ انتشار 2002